Formula List for College Algebra - Sullivan 10th ed. DO NOT WRITE ON THIS COPY.

Intercepts: Learn how to find the x and y intercepts.
Symmetry: Learn how "test for symmetry" with respect to the x-axis, y-axis and origin.

Linear Equation Formulas:

Standard or General Form: $A x+B y=C$
Slope formula: $m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ also $m=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{h}$
Slope y-intercept form: $y=m x+b$ or Linear Function: $f(x)=m x+b$
Point Slope form: $y=y_{1}+m\left(x-x_{1}\right)$ or $y=m\left(x-x_{1}\right)+y_{1}$

Systems of Linear Equations:

Inconsistent - the system has NO SOLUTIONS (Contradiction)
Dependent - the system has INFINITELY OR MANY SOLUTIONS (Identity)
Consistent - the system has at least ONE SOLUTION (Conditional)
Independent - the system has different lines (may have one solution or none).

Quadratic Equation:

A equation is an equation of the form:

$$
a x^{2}+b x+c=0, a, b \text { and } c \text { are real numbers and } a \neq 0 .
$$

Square Root Method: Learn square root method.

Quadratic Formula:

The solutions of the equation $a x^{2}+b x+c=0$, where $a \neq 0$, are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

The Discriminant: For $a x^{2}+b x+c=0, a \neq 0$:
a. If $b^{2}-4 a c>0$, there are two unequal real solutions.
b. If $b^{2}-4 a c=0$, there are "two equal" or "one" real solutions.
c. If $b^{2}-4 a c<0$, there is no real solution.

Zero-Factor principle:

$a b=0$ if and only if $a=0$ or $b=0$.

Factorization Formulas:

The Difference of Two Squares $\quad A^{2}-B^{2}=(A+B)(A-B)$
The Sum of Two Squares
$A^{2}+B^{2}=$ prime
The Difference of Two Cubes

$$
A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)
$$

The Sum of Two Cubes $\quad A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)$
Trinomial Squares - The Square of a Binomial

$$
\begin{aligned}
& A^{2}+2 A B+B^{2}=(A+B)(A+B)=(A+B)^{2} \\
& A^{2}-2 A B+B^{2}=(A-B)(A-B)=(A-B)^{2}
\end{aligned}
$$

Cube of a Binomial:

$$
\begin{aligned}
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
& (x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}
\end{aligned}
$$

Difference quotient of a function f at x is given by:
$\frac{f(x+h)-f(x)}{h}$, where $h \neq 0$.

The Algebra of Functions:

Sum : $(f+g)(x)=f(x)+g(x) \quad$ Difference : $(f-g)(x)=f(x)-g(x)$
Product: $(f \cdot g)(x)=f(x) \cdot g(x)$
Quotient: $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ where $g(x) \neq 0$

Quadratic Function:

A quadratic function is one in the form: $f(x)=a x^{2}+b x+c$
where a, b, and c are constants and a is not equal zero.

Quadratic Equation in Vertex Form:

The vertex form of the equation $a x^{2}+b x+c=0$, where $a \neq 0$, is :
$y=a\left(x-x_{v}\right)^{2}+y_{v}$ or $f(x)=a(x-h)^{2}+k$, where $\left(x_{v}, y_{v}\right)=(h, k)$ is called the vertex.

Vertex of a parabola:

$x_{v}=\frac{-b}{2 a}$ is the AXIS of Symmetry and $y_{v}=f\left(\frac{-b}{2 a}\right)$.
In other words - the vertex is : $(h, k)=\left(x_{v}, y_{v}\right)=\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)=\left(\frac{-b}{2 a}, \frac{4 a c-b^{2}}{4 a}\right)$.

Distance Formula: The distance between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the coordinate plane is given by: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Midpoint Formula: The midpoint $M=\left(x_{m}, y_{m}\right)$ of a line segment with endpoints
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the coordinate plane is given by:
$M=\left(x_{m}, y_{m}\right)=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$

Modeling and Regression Analysis:

Scatterplot:
Go to $Y=$ and press enter on STATPLOT \#1 to turn ON.
STAT, select 1. EDIT (enter x values in list 1 and y values in list 2)
WINDOW (set viewing window) or press Zoom \#9 GRAPH

Find the Best Graphical Model or Regression Line / Curve:
STAT CALC \#4 for Linear Modeling, \#5 for Quadratic Modeling, etc.
and press enter once on the screen or press CALCULATE
To paste your answer onto $Y=$ and graph line on scatterplot:
Go to $Y 1=$ and make sure is blank
VARS select \#5, arrow to EQ, select \#1 (pastes eq. in Y1)
GRAPH (graphs plot and line)
CALC \#1 (evaluates for an input)

The Equation of a Circle:

The standard form of the Equation of a Circle:
$(x-h)^{2}+(y-k)^{2}=r^{2}$.
The equation of a circle with center $(0,0)$ and radius r is given by: $x^{2}+y^{2}=r^{2}$

The general form of the equation of a Circle:
For A, B, C, D, and E real numbers, $A=B, A$ and B not zero, the general form of the equation of the circle is given by: $A x^{2}+B y^{2}+C x+D y+E=0$. Other textbooks may have the general form as: $x^{2}+y^{2}+a x+b y+c=0$.

Vertical Line Test: Know what is and how to do a "vertical line test."

Polynomial Function:

$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0}$ where n is deg ree of the polynomial.

Power Function:

$f(x)=a x^{n}$ where a is a real number, $a \neq 0$, and $n>0$ is an int eger.

Rational Function:

A rational function is one of the form $f(x)=\frac{P(x)}{Q(x)}$
where $P(x)$ and $Q(x)$ are polynomials and $Q(x) \neq 0$.

Vertical Asymptotes:

If $Q(a)=0$, but $P(a) \neq 0$, then the graph of the rational function $f(x)=\frac{P(x)}{Q(x)}$ has a vertical asymptote at $x=a$.

Horizontal Asymptotes:

Suppose $f(x)=\frac{P(x)}{Q(x)}$ is a rational function where the deg ree of
$P(x)$ is m and the deg ree of $Q(x)$ is $n,\left(\frac{\mathbf{m}}{\mathbf{n}}\right)$.
a) If $m<n$, (the deg ree of the numerator is less than the deg ree of the denominator) then the graph of f has a horizontal asymptote at $y=0$.
b) If $m=n$, then the graph of f has a horizontal asymptote at $y=\frac{a}{b}$, where a is the lead coefficient of $P(x)$ and b is the lead coefficient of $Q(x)$.
c) If $m>n$, then the graph of f does not have a horizontal asymptote.
d) If $m=n+1$ (the deg ree of the numerator is one more than the deg ree of the deno min ator), then the line $y=a x+b$ is an oblique asymptote, which is the quotient found u sing long division.
e) If $m \geq n+2$ (the deg ree of the numerator is two or more than the deg ree of the deno min ator), then there are no horizontal or oblique asymptotes.

Note : A rational function will never have both a horizontal asymptote and an oblique asymptote.

Composition of Functions:

Let $f(x)$ and $g(x)$ reprenet two functions. The composition of f and g, written $(f \circ g)(x)$, is defined as $(f \circ g)(x)=f(g(x))$. Here, $g(x)$
must be in the domain of $f(x)$. If it is not, then $f(g(x))$ will be undefined

One-to-one Functions:

The inverse of a function f is also a function if and only iff is one-to-one.
The graph of a one-to-one function f and the graph of its inverse function f^{-1} are symmetric with respect to the line $y=x$.

Inverse Functions:

Suppose the inverse of f is a function, denoted by f^{-1}. Then $f^{-1}(y)=x$ if and only if $f(x)=y$.

Composition of a Function and its Inverse:

If a function, $f(x)$ has an inverse $f^{-1}(x)$, then:
$\left(f^{-1} \circ f\right)(x)=x$ for every x in the domain of f, and
$\left(f \circ f^{-1}\right)(x)=x$ for every x in the domain of f^{-1}.

Exponents:

1. $a^{m} \cdot a^{n}=a^{m+n}$
2. $\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0$
3. $\left(a^{m}\right)^{n}=a^{m \cdot n}$
4. $(a b)^{m}=a^{m} b^{m}$
5. $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}, b \neq 0$
6. $\frac{1}{a^{-m}}=a^{m}, a \neq 0$
7. $\frac{a^{-m}}{b^{-n}}=\frac{b^{n}}{a^{m}}, a \neq 0, b \neq 0$
8. $\left(\frac{a}{b}\right)^{-m}=\left(\frac{b}{a}\right)^{m}$
9. $a^{0}=1, a \neq 0$
10. $a^{1 / n}=\sqrt[n]{a}, n$ is an int eger $n \geq 2$.
11. $a^{m / n}=\left(a^{1 / n}\right)^{m}=\left(a^{m}\right)^{1 / n}=\sqrt[n]{a^{m}}$

Exponential Function:

$f(x)=a b^{x}$, where b, a and x are real numbers, $b>0, b \neq 1$ and $a \neq 0$
The base b the growth factor and because $f(0)=a b^{0}=a$, a is called the initial value.

The number e is defined by the expression:
$\left(1+\frac{1}{n}\right)^{n}$ and as $n \rightarrow \infty e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.

Exponential Formulas:

Simple Interest Formula: $I=\operatorname{Prt}$
Compound Interest: $A=P(1+r)^{n}$
Compound Interest with n Compound n times per year: $A=P\left(1+\frac{r}{n}\right)^{n t}$,
$P=$ principal, $r=$ annual rate, $n=$ number of compoundings per year,
$t=$ number of years, $A=$ amount after t years.
Compound Interest Continuously: $A=P e^{r t}$

Exponential Equality:

If $b^{x}=b^{y}$, then $x=y$ where $b>0$ and $b \neq 1$.

Logarithms and Exponents: Conversion Equations

If $b>0$ and $x>0$, then
$y=\log _{b} x$ if and only if $x=b^{y} . \quad y=\ln x$ if and only if $e^{y}=x$.

Useful Logarithm Properties:

$\log _{b} b=1$, because $b^{1}=b$
$\log _{b} 1=0$, because $b^{0}=1$
$\log _{b} b^{x}=x$, because $b^{x}=b^{x}$
$b^{\log _{b} x}=x$, for $x>0$

Other Properties of Logarithms:
If x, y and $b>0$, then
$a \cdot \log _{b}(x y)=\log _{b} x+\log _{b} y$
b. $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
c. $\log _{b}(x)^{k}=k \log _{b} x$
$\ln e=1$, because $e^{1}=e$.
$\ln 1=0$, because $e^{0}=1$.
$\ln e^{x}=x$, because $e^{x}=e^{x}$.
$e^{\ln x}=x$, for $x>0$.

If x and $y>0$, then a. $\ln (x y)=\ln x+\ln y$
b. $\ln \left(\frac{x}{y}\right)=\ln x-\ln y$
c. $\ln (x)^{k}=k \ln x$

Properties of Natural Logarithms:

If x and $y>0$, then
a. $\ln (x y)=\ln x+\ln y$
b. $\ln \left(\frac{x}{y}\right)=\ln x-\ln y$
$c \cdot \ln (x)^{k}=k \ln x$

The Natural log and e^{x} :
$\ln e^{x}=x$, for all x and $e^{\ln x}=x$, for $x>0$.
Change the base of a logarithm:

$$
\log _{b} a=\frac{\log _{10} a}{\log _{10} b}=\frac{\ln a}{\ln b}
$$

Absolute Value:

Definition of Absolute Value: $|x|=\left\{\begin{array}{ll}x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0\end{array}\right\}$
Absolute Value Equations and Inequalities:
a. $|a x+b|=c(c>0)$ is equivalent to $: a x+b=c$ or $a x+b=-c$
b. $|a x+b|<c(c>0)$ is equivalent to : $-c<a x+b<c$
c. $|a x+b|>c(c>0)$ is equivalent to $: a x+b>c$ or $a x+b<-c$

