Formula List for College Algebra – Sullivan 10th ed. DO NOT WRITE ON THIS COPY.

Intercepts: Learn how to find the x and y intercepts.

Symmetry: Learn how "test for symmetry" with respect to the x-axis, y-axis and origin.

Linear Equation Formulas:

Standard or General Form: Ax + By = C

Slope formula:
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$
 also $m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(b) - f(a)}{b - a} = \frac{f(x + h) - f(x)}{h}$

Slope y-intercept form: y = mx + b or Linear Function: f(x) = mx + b

Point Slope form: $y = y_1 + m(x - x_1)$ or $y = m(x - x_1) + y_1$

Systems of Linear Equations:

Inconsistent – the system has NO SOLUTIONS (Contradiction)

Dependent – the system has INFINITELY OR MANY SOLUTIONS (Identity)

Consistent – the system has at least ONE SOLUTION (Conditional)

Independent – the system has different lines (may have one solution or none).

Quadratic Equation:

A equation is an equation of the form:

 $ax^2 + bx + c = 0$, a, b and c are real numbers and $a \neq 0$.

Square Root Method: Learn square root method.

Quadratic Formula:

The solutions of the equation
$$ax^2 + bx + c = 0$$
, where $a \neq 0$, are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The Discriminant: For $ax^2 + bx + c = 0$, $a \ne 0$:

- a. If $b^2 4ac > 0$, there are two unequal real solutions.
- b. If $b^2 4ac = 0$, there are "two equal" or "one" real solutions.
- c. If $b^2 4ac < 0$, there is no real solution.

Zero-Factor principle:

$$ab=0$$
 if and only if $a=0$ or $b=0$.

Factorization Formulas:

The Difference of Two Squares
$$A^2 - B^2 = (A + B)(A - B)$$

The Sum of Two Squares
$$A^2 + B^2 = prime$$

The Difference of Two Cubes
$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$

$$A^3 + B^3 = (A + B)(A^2 - AB + B^2)$$

Trinomial Squares - The Square of a Binomial

$$A^{2} + 2AB + B^{2} = (A + B)(A + B) = (A + B)^{2}$$

$$A^{2}-2AB+B^{2}=(A-B)(A-B)=(A-B)^{2}$$

Cube of a Binomial:

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

$$(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$$

Difference quotient of a function f at x is given by:

$$\frac{f(x+h)-f(x)}{h}, where h \neq 0.$$

The Algebra of Functions:

Sum: (f+g)(x) = f(x) + g(x)

Difference: (f-g)(x) = f(x) - g(x)

Product: $(f \cdot g)(x) = f(x) \cdot g(x)$

Quotient: $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ where $g(x) \neq 0$

•••

Quadratic Function:

A quadratic function is one in the form: $f(x) = ax^2 + bx + c$ where a, b, and c are constants and a is not equal zero.

Quadratic Equation in Vertex Form:

The vertex form of the equation $ax^2 + bx + c = 0$, where $a \neq 0$, is:

$$y = a(x-x_v)^2 + y_v \text{ or } f(x) = a(x-h)^2 + k$$
,

where $(x_v, y_v) = (h, k)$ is called the vertex.

Vertex of a parabola:

$$x_v = \frac{-b}{2a}$$
 is the AXIS of Symmetry and $y_v = f\left(\frac{-b}{2a}\right)$.

In other words – the vertex is:
$$(h,k) = (x_v, y_v) = \left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right) = \left(\frac{-b}{2a}, \frac{4ac - b^2}{4a}\right)$$
.

Distance Formula: The distance between points (x_1, y_1) and (x_2, y_2) in the coordinate plane is

given by:
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint Formula: The midpoint $M = (x_m, y_m)$ of a line segment with endpoints

 (x_1, y_1) and (x_2, y_2) in the coordinate plane is given by:

$$M = (x_m, y_m) = \left(\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}\right)$$

Modeling and Regression Analysis:

Scatterplot:

Go to Y= and press enter on STATPLOT #1 to turn ON. STAT, select 1. EDIT (enter x values in list 1 and y values in list 2) WINDOW (set viewing window) or press Zoom #9 GRAPH

Find the Best Graphical Model or Regression Line / Curve: STAT CALC #4 for Linear Modeling, #5 for Quadratic Modeling, etc. and press enter once on the screen or press CALCULATE

To paste your answer onto Y= and graph line on scatterplot:

Go to Y1 = and make sure is blank

VARS select #5, arrow to EQ, select #1 (pastes eq. in Y1)

GRAPH (graphs plot and line)

CALC #1 (evaluates for an input)

The Equation of a Circle:

The standard form of the Equation of a Circle:

$$(x-h)^2 + (y-k)^2 = r^2$$
.

The equation of a circle with center (0,0) and radius r is given by: $x^2 + y^2 = r^2$

The general form of the equation of a Circle:

For A, B, C, D, and E real numbers, A = B, A and B not zero, the general form of the equation of the circle is given by: $Ax^2 + By^2 + Cx + Dy + E = 0$. Other textbooks may have the general form as: $x^2 + y^2 + ax + by + c = 0$.

Vertical Line Test: Know what is and how to do a "vertical line test."

. . .

Polynomial Function:

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x^1 + a_0$ where n is degree of the polynomial.

Power Function:

 $f(x) = ax^n$ where a is a real number, $a \ne 0$, and n > 0 is an integer.

Rational Function:

A rational function is one of the form
$$f(x) = \frac{P(x)}{Q(x)}$$

where $P(x)$ and $Q(x)$ are polynomials and $Q(x) \neq 0$.

Vertical Asymptotes:

If
$$Q(a) = 0$$
, but $P(a) \neq 0$, then the graph of the rational function
$$f(x) = \frac{P(x)}{Q(x)} \text{ has a vertical asymptote at } x = a.$$

Horizontal Asymptotes:

Suppose
$$f(x) = \frac{P(x)}{Q(x)}$$
 is a rational function where the degree of

$$P(x)$$
 is m and the degree of $Q(x)$ is n , $(\frac{\mathbf{m}}{\mathbf{n}})$.

- a) If m < n, (the degree of the numerator is less than the degree of the denominator) then the graph of f has a horizontal asymptote at y = 0.
- b) If m = n, then the graph of f has a horizontal asymptote at $y = \frac{a}{b}$, where a is the lead coefficient of P(x) and b is the lead coefficient of Q(x).
- c) If m > n, then the graph of f does not have a horizontal asymptote.
- d) If m = n + 1 (the degree of the numerator is one more than the degree of the denominator), then the line y = ax + b is an oblique asymptote, which is the quotient found $u \sin g$ long division.
- e) If $m \ge n + 2$ (the degree of the numerator is two or more than the degree of the denominator), then there are no horizontal or oblique asymptotes.

Note: A rational function will never have both a horizontal asymptote and an oblique asymptote.

Composition of Functions:

Let
$$f(x)$$
 and $g(x)$ reprenet two functions. The composition of f and g , written $(f \circ g)(x)$, is defined as $(f \circ g)(x) = f(g(x))$. Here, $g(x)$ must be in the domain of $f(x)$. If it is not, then $f(g(x))$ will be undefined.

One-to-one Functions:

The inverse of a function f is also a function if and only if f is one-to-one.

The graph of a one-to-one function f and the graph of its inverse function f^{-1} are symmetric with respect to the line y = x.

Inverse Functions:

Suppose the inverse of f is a function, denoted by f^{-1} . Then $f^{-1}(y) = x$ if and only if f(x) = y.

Composition of a Function and its Inverse:

If a function, f(x) has an inverse $f^{-1}(x)$, then:

 $(f^{-1} \circ f)(x) = x$ for every x in the domain of f, and

 $(f \circ f^{-1})(x) = x$ for every x in the domain of f^{-1} .

Exponents:

$$1. \ a^m \cdot a^n = a^{m+n}$$

3.
$$(a^m)^n = a^{m \cdot n}$$

$$5. \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, \ b \neq 0$$

7.
$$\frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m}, \ a \neq 0, \ b \neq 0$$

9.
$$a^0 = 1$$
, $a \neq 0$

11.
$$a^{m/n} = \left(a^{1/n}\right)^m = \left(a^m\right)^{1/n} = \sqrt[n]{a^m}$$

2.
$$\frac{a^m}{a^n} = a^{m-n}, \ a \neq 0$$

$$4. \left(ab\right)^m = a^m b^m$$

6.
$$\frac{1}{a^{-m}} = a^m, \ a \neq 0$$

$$8. \left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{m}$$

10.
$$a^{1/n} = \sqrt[n]{a}$$
, n is an integer $n \ge 2$.

Exponential Function:

 $f(x) = ab^x$, where b, a and x are real numbers, b > 0, $b \ne 1$ and $a \ne 0$

The base b the growth factor and because $f(0) = ab^0 = a$, a is called the initial value.

The number e is defined by the expression:

$$\left(1+\frac{1}{n}\right)^n$$
 and as $n\to\infty$ $e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$.

Exponential Formulas:

Simple Interest Formula: I = Prt

Compound Interest: $A = P(1 + r)^n$

Compound Interest with n Compound n times per year: $A = P\left(1 + \frac{r}{n}\right)^{nt}$,

P = principal, $r = annual \ rate$, $n = number \ of \ compoundings \ per \ year$,

 $t = number \ of \ years, \ A = amount \ after \ t \ years.$

Compound Interest Continuously: $A = P e^{rt}$

Exponential Equality:

If
$$b^x = b^y$$
, then $x = y$ where $b > 0$ and $b \ne 1$.

Logarithms and Exponents: Conversion Equations

If
$$b > 0$$
 and $x > 0$, then

$$y = \log_b x$$
 if and only if $x = b^y$.

$$y = \ln x$$
 if and only if $e^{y} = x$.

Useful Logarithm Properties:

$$\log_b b = 1$$
, because $b^1 = b$

$$\log_b 1 = 0$$
, because $b^0 = 1$

$$\log_b b^x = x$$
, because $b^x = b^x$

$$b^{\log_b x} = x$$
, for $x > 0$

$$ln e = 1, because e^1 = e.$$

$$\ln 1 = 0$$
, because $e^0 = 1$.

$$\ln e^x = x$$
, because $e^x = e^x$.

$$e^{\ln x} = x$$
, for $x > 0$.

Other Properties of Logarithms:

If
$$x$$
, y and $b > 0$, then

$$a. \log_b(xy) = \log_b x + \log_b y$$

$$b. \log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$c.\log_b(x)^k = k\log_b x$$

If
$$x$$
 and $y > 0$, then

$$a. \ln (x y) = \ln x + \ln y$$

b.
$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y$$

$$c. \ln(x)^k = k \ln x$$

Properties of Natural Logarithms:

If
$$x$$
 and $y > 0$, then

$$a. \ln (xy) = \ln x + \ln y$$
 $b. \ln \left(\frac{x}{y}\right) = \ln x - \ln y$ $c. \ln (x)^k = k \ln x$

The Natural log and e^x :

$$ln e^x = x$$
, for all x and $e^{ln x} = x$, for $x > 0$.

Change the base of a logarithm:

$$\log_b a = \frac{\log_{10} a}{\log_{10} b} = \frac{\ln a}{\ln b}$$

Absolute Value:

Definition of Absolute Value:
$$|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$

Absolute Value Equations and Inequalities:

a.
$$|ax+b| = c (c > 0)$$
 is equivalent to $: ax+b = c$ or $ax+b=-c$

b.
$$|ax+b| < c \ (c > 0)$$
 is equivalent to $: -c < ax+b < c$

c.
$$|ax+b| > c$$
 (c > 0) is equivalent to: $ax+b > c$ or $ax+b < -c$